Type | Description |
Batch | Training batch configuration |
Classifier | Base type for classifiers |
Dataset | Dataset for holding training data |
EarlyStopping | Early stopping configuration |
GradientClipping | Gradient clipping configuration |
LearningRate | Learning rate schemes |
LogisticClassifier | Classifier for binary classification |
Loss | Loss function configuration |
Method | Gradient-based optimization methods |
Momentum | Momentum configuration |
Optimize | Main optimization module |
Params | Record type holding optimization or training parameters |
Regularization | Regularization configuration |
Rnd | Random number generator |
SoftmaxClassifier | Classifier for softmax classification |
Util | Various utility functions |
Module | Description |
Params |
Type | Description |
HMCSampler | Hamiltonian MCMC sampler |
Type | Description |
Language | Language model |
Type | Description |
Activation | Activation layer with custom functions |
FeedForward | Feedforward sequence of layers |
GRU | Gated recurrent unit layer |
Initializer | Initialization schemes for neural layer weights |
LSTM | Long short-term memory layer |
LSTMAlt | Long short-term memory layer (alternative implementation) |
Layer | Base type for neural layers |
Linear | Linear layer |
LinearNoBias | Linear layer with no bias |
Recurrent | Vanilla RNN layer |